
Marjee Chmiel || EDIT 772 || Mally Summer 2009

 1

Introduction to the Activity

 This interactive is a drag-and drop-activity geared toward late-middle school,
or early high school students in an introductory physical science course. A key
learning objective in physical science is for students to understand that the
periodic table is organized according to atomic number and atomic mass. By
understanding this organizing principal, students should be able to predict where
elements would appear on the periodic table. This interactive was created using
Flash CS4 and Actionscript 3.0. It incorporates the following techniques:

- Motion tweening (for the introduction)
- Shape tweening (for the introduction)
- Layers
- Actionscripting

o Drag-and-drop functionality
o “Snap-back” functionality for the drag-able items
o Dynamic text-response box

- Embedded audio (a music file for fun)

Getting Started: Setting up the Layers and timeline

 This particular interactive will have a number of components, thus careful
planning of the timeline is critical. Create layers for:
 - The audio file
 -The Actionscript
 -The background
 -Images for the drag-and-drop
 -The dynamic text for the drag-and-drop game
 -A folder called, “startitems” that will contain layers for the motion and
shape tweened items serving as a “fun” introduction for the interactive:

Periodic Table Drag and Drop Activity 

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 2

Figure 1a

Layers were added by going to the bottom of the timeline and selecting the “new
layer” icon. The “new folder” icon is located right next to it. Layers can then be
dragged and dropped into a folder. You can see these icons at the very bottom
(in the gray bar) of Figure 1b.

Figure 1b

Figure 1a

Using a folder within layers was necessary to
keep track of the motion tweened photos of the
elements and the shape tweened names of the
elements.

I typically lock a layer as soon as I am finished
working with it.

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 3

Setting the Stage

The stage area was modified by clicking directly on the stage and choosing the
“Priorities” tab. Clicking on the individual items, I was able to customize my file
by:

- Expanding the default dimensions
- Changing the background of the screen by selecting a different color
- Changing my frames per rate second

Figure 2a

I imported my background graphic into the library by selecting File>>>Import to
Library and choosing the appropriate file. I placed the graphic into its desired
location and locked it.
 The periodic table didnʼt need to be visible until the drag-and-drop activity, and
thus needed to be obscured for the introduction. I selected the “Intro” layer stored
in the “startitems” and right-clicked on the very first square in the timeline. Right-
clicking brought up a menu that allowed me to select, “insert keyframe”. Once
my keyframe was established, I used the rectangle tool and the paint bucket tool
to draw a black square to hide the periodic table during the introduction.

Figure 2b

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 4

Figure 2c

On this same frame, using the text tool, I typed the name of the introduction.

Motion Tweening:

I used photos to represent some of the more visually fascinating elements: neon,
carbon, tungsten, and mercury. I imported each of these images into the library
by going to:
 -File
 -Import to Library
and selecting the file name. Each element has a corresponding layer. Selecting
that layer (and locking all others) I dragged the appropriate image onto the
screen and right-clicked on the item to bring up a drop-down menu that allowed
me to select “Convert to symbol”. Upon converting the item to a symbol, I was
presented with another menu that allowed me to select 1) the type of symbol I
wanted (a graphic) and the 2) to name the symbol.

Figure 3a

Figure 2c

The rectangle tool is selected in Figure
2b. Below, you can see the paintbucket
tool. Click on the color square next to
it to select the color

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 5

For each element and (its layer) I selected a keyframe that was approximately 10
frames in from the previous element (the first element was introduced after the
title had a little over once-second of screen time). I right-clicked and selected
“Insert keyframe” into that particular square. This marked the beginning of that
symbolʼs path.
 Next, I selected a keyframe approximately 10 frames over (thus giving the
symbol about 2 seconds of travel time) and right-clicked on that frame where I
selected the top option, “Motion Tween”. The appearance of a faint purple line
meant that the motion tween was accepted, and I could use the “select” tool to
modify the path of the object.

Figure 3b

Figure 3c

Figure 3b

Using the solid black
“select” arrow in the
“Tools” menu allows me
to modify the path of my
Neon symbol. Otherwise,
I can just drag my symbol
around the stage and
influence the path it will
take as part of its motion
tween.

Figure 3c
Successful motion
tweens turn blue on the
timeline. The staggered
nature of their
appearance is readily
visible.

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 6

Shape Tweening

I used shape tweening to transition between each of the elements names. These
were all done on the same layer (“intro”) in a text box that did not change
position. Each word was added by right-clicking on the frame where an element
first made its appearance, and the selecting “Insert Keyframe” and the textbox
was edited using the text tool.
 Once the text was written in, I went back and selected the letters in each
word. From the main Flash menu, I chose the “Modify” drop-down menu and
selected “Break Apart” twice, resulting in the following display:

Figure 4a

The next step was to go between each of the keyframes denoting where the new
words would appear within the “intro” layer. Right-click between each of the
keyframes and select “Add shape tween”. A successful shape tween addition will
become green with an arrow going through the timeline frames and will resemble
the image below.

Figure 4b

All layers for the introduction need to have their frames truncated after the final
element has been up for 10 frames. In the case of my interactive, all of the
layers for the introduction stop at 65 frames.

Figure 4a

It is necessary to select “Break Apart” twice
so that the text goes from blue boxes (top) to
dots (bottom) to indicate that the text is now
ready for shape tweening.

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 7

Adding Audio

The audio component was imported to the library using File>>Import to Library as
an MP3 file. Once in the library, I made sure all layers other than the “music”
layer were locked and I dragged the file onto the stage. I decided to allow the
audio to persist through the entire interactive, and thus let the frames spill over to
the next part of the interactive.

Figure 5

Figure 5

Music as it appears in the timeline and in the library.

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 8

Setting up the Drag-and-Drop

For the drag-and-drop section of the game, add a new keyframe to the, until now,
quiet layer called, “images” to follow the end of the introduction. This layer will
contain our drag and drop elements and our dynamic text box.

There are two main types of graphics I needed to create using Flash drawing
tools: “pegs” and “targets”. The targets are four squares representing “holes” in
the periodic table and the “pegs” represent the four elements that can be dragged
and dropped in.

Figure 6a

Each of these items must be converted to a symbol via the Modify>>Convert to
Symbol route. These symbols will all be movie clips. Each symbol will receive
two names: one name will serve as its general, library name. The second one
will be the specific instance name. The instance names can be assigned when
the movie clip is dragged onto the stage, the movie clip is selected, and you pick
the properties tab:

Figure 6b

Figure 6a

A “peg” on the left and a “target” on
the right.

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 9

Table 6
Movie clip and instance names for drag-and-drop items

Movie Clip Name Instance Name
mcHeliumPeg helium_mc
mcHeliumTarget targethelium
mcCalciumPeg calcium_mc
mcCalciumTarget targetcalcium
mcCarbonPeg carbon_mc
mcCarbonTarget targetcarbon
mcChlorinePeg chlorine_mc
mcChlorineTarget targetchlorine

Warning: The text on the pegs had to be selected and “Modify”>>”Break Apart”
twice in before grouped and converted to a symbol. Otherwise, if a user clicked
on the text during the drag-and-drop game, they selected the text rather than the
peg. The peg functions much better if the text is broken down and then slowly
integrated.

Creating a Dynamic Textbox

Find a spot in your “images” layer that is big enough to hold text. The text will
change dynamically depending on the playersʼ actions using Actionscript that will
be described in the next step.
 Select the text took and draw a box big enough for your text. Enter some
general instructions. Next, select this box and go to the “Properties” pane. There
you will see the option to name your textbox. For this interactive, I named it
replay_txt. Right below the naming option is a drop-down menu. Selecting
“Dynamic Text” from this menu tells Flash that we want this text to be able to
change.

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 10

Figure 7

 s
Actionscript for the Drag-and-Drop and Dynamic Text

In the final frame of the timeline, select the actions layer. At the top of the
timeline, you will see the actions tab. Select the tab:

Figure 8

This will open the actions pain. Below, in blue, is the code for the interactive.
Comments about the code will appear in red through out the code. These
comments are not part of the code.

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 11

stop()

//This string prevents the Flash movie from running through this frame and
treating it as part of the animation. It tells the movie to basically stop here and
allow the user to do all the good things below:

var startX:Number;
var startY:Number;
var counter:Number = 0;

// This code tells the movie that each of the pegs has a start position. Later in the
code, I can tell the pegs to go back to this start position if the player does not get
the peg into its proper target.

helium_mc.addEventListener(MouseEvent.MOUSE_DOWN, pickUp);
helium_mc.addEventListener(MouseEvent.MOUSE_UP, dropIt);
carbon_mc.addEventListener(MouseEvent.MOUSE_DOWN, pickUp);
carbon_mc.addEventListener(MouseEvent.MOUSE_UP, dropIt);
chlorine_mc.addEventListener(MouseEvent.MOUSE_DOWN, pickUp);
chlorine_mc.addEventListener(MouseEvent.MOUSE_UP, dropIt);
calcium_mc.addEventListener(MouseEvent.MOUSE_DOWN, pickUp);
calcium_mc.addEventListener(MouseEvent.MOUSE_UP, dropIt);

//These are the instructions that tell the movie that the mouse will control picking
up and dropping the pegs.

function pickUp(event:MouseEvent):void {
 event.target.startDrag();
 reply_txt.text = "";
 event.target.parent.addChild(event.target);
 startX = event.target.x;
 startY = event.target.y;
}
function dropIt(event:MouseEvent):void {
 event.target.stopDrag();
 var myTargetName:String = "target" + event.target.name;
 var myTarget:DisplayObject = getChildByName(myTargetName);
 if (event.target.dropTarget != null && event.target.dropTarget.parent ==
myTarget){
 reply_txt.text = "Wow!";
 event.target.removeEventListener(MouseEvent.MOUSE_DOWN,
pickUp);

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 12

 event.target.removeEventListener(MouseEvent.MOUSE_UP,
dropIt);
 event.target.buttonMode = false;
 event.target.x = myTarget.x;
 event.target.y = myTarget.y;
 counter++;
 } else {
 reply_txt.text = "Nope";
 event.target.x = startX;
 event.target.y = startY;
 }
 if(counter == 4){
 reply_txt.text = "Outstanding!";
 }

//These items instruct the dynamic text on how to provide feedback to players
depending on whether the player is right or wrong. Note the “if(counter)
command can have its total number changed to accommodate the quantity of
questions handled by the drag-and-drop.

}

helium_mc.buttonMode = true;
carbon_mc.buttonMode = true;
chlorine_mc.buttonMode = true;
calcium_mc.buttonMode = true;

Find the blue check-mark button at the top of our Actions pane and select it
when you are done. IT will let you know if your code contains any syntax
errors.

Publishing

Prior to publishing your work, be sure to take a look at how it is operating in the
browser window. Go to File>>Publish Preview and select the default html view.
Make sure there are no errors displayed in your Actions window. If any movie
clips are mislabeled, it may break your Actionscript code entirely and your drag-
and-drop wonʼt work. You should also review the pace of the animations and
make sure they make sense to you.

To publish the document, go to File>>Publish Settings where you can direct your
file to the proper folder and select the file formats you will be publishing in:

Marjee Chmiel || EDIT 772 || Mally Summer 2009

 13

References:

Lunn, G. (2007). Flash Drag and Drop | monkeyflash.com. Retrieved August 4, 2009:

http://monkeyflash.com/tutorials/flash-drag-and-drop/.

